Modular Computation versus Quantum Computation

Modular computation will re-shape the way modern computation is performed. Modular Computation is significantly more practical and relevant for meeting actual demands of the 21st century:

Applications / Capability	Modular computation	Quantum computation
Performs Quantum Applications?	8	~
Solves certain types of intractable problems involving graphs ?	$\boldsymbol{\otimes}$	\checkmark
Other Quantum computations and applications ?		\checkmark
Quantum cryptography ?		Maybe in future
Supports Conventional Cryptography?	\checkmark	$\boldsymbol{\otimes}$
RSA	\checkmark	$\boldsymbol{\otimes}$
Elliptical Curve	\checkmark	$\mathbf{ \odot}$
Performs Digital Arithmetic?	\checkmark	$\boldsymbol{\otimes}$
Performs deep neural network processing?	\checkmark	$\mathbf{ \mathbf{ S}}$
Performs highly accurate matrix multiplication?	\checkmark	$\boldsymbol{\otimes}$
Performs digital signal processing?	\checkmark	$\boldsymbol{\otimes}$
Can leverage digital computer algorithms and programs?	\checkmark	\bigotimes
Technology / Implementation	\checkmark	$\boldsymbol{\otimes}$
Can use conventional IC technology?	\checkmark	\bigotimes
Can be implemented using ASIC?	\checkmark	$\mathbf{\otimes}$
Can be implemented using FPGA?	\checkmark	\mathbf{S}
Can be implemented using custom IC?	\checkmark	Highly custom
Is a mature architecture?	$\boldsymbol{\otimes}$	\bigotimes
Packaging and Logistics	\checkmark	$\boldsymbol{\otimes}$
Requires super-cooling?	$\boldsymbol{\otimes}$	\checkmark
Small form factor?	\checkmark	\mathbf{S}
Can take advantage of 3-D IC technology?	\checkmark	\bigotimes
Can take advantage of newest IC Technologies in production?	\checkmark	$\boldsymbol{\otimes}$
Can take advantage of latest digital IC Technologies in R&D?	\checkmark	\bigotimes
Modular computing can be integrated into Quantum computing?	\checkmark	\checkmark
Timeframe for serious deployment	2-3 years	Unknown
Present funding level	\$0	>\$500 million

Copyright[©] 2018, Digital System Research, Inc.