

Maitrix Modular Computation Mini-Deck

What Is Modular Computation?

Modular computation is a form of arithmetic based on the Residue Number System (RNS), where numbers are represented by their residues modulo a set of relatively prime bases. This system allows completely carry-free computation across all arithmetic operations.

Maitrix has pioneered a major advancement to traditional RNS: a scalable fractional fixedpoint format that enables practical, high-precision modular computation in real systems. This innovation separates modular computation from legacy RNS concepts, delivering a powerful, modern framework for arithmetic.

Key Characteristics:

- > Carry-free, parallel arithmetic for signed addition, multiplication, and accumulation
- Exceptionally scalable in data width and throughput
- > Enables new architectures for high-throughput matrix operations
- Maitrix LLC is pioneering these architectures with real-world hardware RTL implementations

Why It Solves a Future Bottleneck

As AI and simulation workloads grow, the limitations of floating-point arithmetic become a bottleneck. Modular computation offers a scalable alternative that avoids precision loss, excessive rounding, and thermal inefficiency.

Benefits:

- > Parallel, deterministic throughput at any bit width
- Lower entropy, better stability in deep compute pipelines
- > Ideal for workloads where silent error or precision drift is detrimental

What Pain It Addresses

Today's AI and HPC systems suffer from multiple weaknesses in their arithmetic layers. Maitrix modular computation directly addresses these limitations.

- Silent numerical errors in AI inference and training
- Bit-flip sensitivity in FPGA/ASIC deployments, especially in radiation-prone or highspeed designs
- Precision-energy tradeoffs in deep time-series or simulation workloads
- Inefficient accumulation and memory-bound matrix math in conventional architectures

What We've Already Built

Maitrix LLC has developed and demonstrated a comprehensive suite of working IP and prototype tools for modular computation.

- > Fully pipelined Modular Matrix Unit (MMU) for FPGA or ASIC
- Forward Error Correcting Arithmetic Pipeline (bolt-on extension to MMU)
- RNS-APAL: A C++ based modular arithmetic simulator tool
- > Video demos, test benches, simulation and hardware verified RTL
- Patent portfolio includes: MMU, reverse converter, modular accumulator, and forward error correction logic

What Happens If Industry Ignores This

Modular computation addresses fundamental scaling limits. Without it, critical computing domains risk stagnation or failure.

- > AI model instability at larger scale or lower power thresholds
- > Precision failures in quantum simulation, financial forecasting, or physics engines
- Bottlenecks in FPGA and ASIC matrix throughput due to carry chains and memory bounces

Maitrix IP offers an architectural escape velocity:

- Systolic MMU design with true single-pass accumulation
- > Energy-efficient, forward error-corrected computation
- Scalable to both ultra-high precision and small-word AI inference formats

